Package index
-
advanced_cleaning()
remove_cell_duplicates()
move_2closest_cell()
- Advanced occurrence data cleaning
-
bivariate_response()
- Bivariate response plot for fitted models
-
calibration()
- Fitting and evaluation of models, and selection of the best ones
-
detect_concave()
- Detect concave curves in GLM and GLMNET models
-
explore_calibration_geo()
- Explore the spatial distribution of occurrence and background points
-
explore_calibration_hist()
- Explore variable distribution for occurrence and background points
-
extract_var_from_formulas()
- Extract predictor names from formulas
-
fit_selected()
- Fit models selected after calibration
-
glm_mx()
- Maxent-like Generalized Linear Models (GLM)
-
glmnet_mx()
- Maxent-like glmnet models
-
import_projections()
- Import rasters resulting from projection functions
-
initial_cleaning()
sort_columns()
remove_missing()
remove_duplicates()
remove_corrdinates_00()
filter_decimal_precision()
- Initial occurrence data cleaning steps
-
kuenm2
kuenm2-package
- kuenm2: Detailed Development of Ecological Niche Models
-
organize_future_worldclim()
- Organize and structure future climate variables from WorldClim
-
partial_roc()
- Partial ROC calculation for multiple candidate models
-
perform_pca()
- Principal Component Analysis for raster layers
-
plot_explore_calibration()
- Histograms to visualize data from explore_calibration objects
-
plot_importance()
- Summary plot for variable importance in models
-
predict.glmnet_mx()
- Predict method for glmnet_mx (maxnet) models
-
predict_selected()
- Predict selected models for a single scenario
-
prepare_data()
- Prepare data for model calibration
-
prepare_projection()
- Preparation of data for model projections
-
prepare_user_data()
- Prepare data for model calibration with user-prepared calibration data
-
print(<prepared_data>)
print(<calibration_results>)
print(<fitted_models>)
print(<projection_data>)
print(<model_projections>)
- Print method for kuenm2 objects
-
project_selected()
- Project selected models to multiple sets of new data (scenarios)
-
projection_changes()
- Compute changes of suitable areas between scenarios
-
projection_mop()
- Analysis of extrapolation risks in projections using the MOP metric
-
projection_variability()
- Explores variance coming from distinct sources in model predictions
-
response_curve()
- Variable response curves for fitted models
-
select_models()
- Select models that perform the best among candidates
-
variable_importance()
- Variable importance