Skip to contents
-
advanced_cleaning()
remove_cell_duplicates()
move_2closest_cell()
- Advanced occurrence data cleaning
-
bias
- Example Bias File
-
bivariate_response()
- Bivariate response plot for fitted models
-
calib_results_glm
- Calibration Results (glm)
-
calib_results_maxnet
- Calibration Results (Maxnet)
-
calibration()
- Fitting and evaluation of models, and selection of the best ones
-
chelsa_current
- SpatRaster Representing present-day Conditions (CHELSA)
-
chelsa_lgm_ccsm4
- SpatRaster Representing LGM Conditions (GCM: CCSM4)
-
chelsa_lgm_cnrm_cm5
- SpatRaster Representing LGM Conditions (GCM: CNRM-CM5)
-
chelsa_lgm_fgoals_g2
- SpatRaster Representing LGM Conditions (GCM: FGOALS-g2)
-
chelsa_lgm_ipsl
- SpatRaster Representing LGM Conditions (GCM: IPSL-CM5A-LR)
-
chelsa_lgm_miroc
- SpatRaster Representing LGM Conditions (GCM: MIROC-ESM)
-
chelsa_lgm_mpi
- SpatRaster Representing LGM Conditions (GCM: MPI-ESM-P)
-
chelsa_lgm_mri
- SpatRaster Representing LGM Conditions (GCM: MRI-CGCM3)
-
colors_for_changes()
- Set Colors for Change Maps
-
detect_concave()
- Detect concave curves in GLM and GLMNET models
-
enmeval_block
- Spatial Blocks from ENMeval
-
explore_calibration_geo()
- Explore the spatial distribution of occurrence and background points
-
explore_calibration_hist()
- Explore variable distribution for occurrence and background points
-
explore_partition_extrapolation()
- Analysis of extrapolation risks in partitions using the MOP metric
-
extract_occurrence_variables()
- Extracts Environmental Variables for Occurrences
-
extract_var_from_formulas()
- Extract predictor names from formulas
-
fit_selected()
- Fit models selected after calibration
-
fitted_model_chelsa
- Fitted model with CHELSA variables
-
fitted_model_concave
- Fitted model with concave curves
-
fitted_model_glm
- Fitted model with glm algorithm
-
fitted_model_maxnet
- Fitted model with maxnet algorithm
-
enmeval_block
- Spatial Blocks from flexsdm
-
future_2050_ssp126_access
- SpatRaster Representing Future Conditions (2041-2060, SSP126, GCM: ACCESS-CM2)
-
future_2050_ssp126_miroc
- SpatRaster Representing Future Conditions (2041-2060, SSP126, GCM: MIROC6)
-
future_2050_ssp585_access
- SpatRaster Representing Future Conditions (2041-2060, SSP585, GCM: ACCESS-CM2)
-
future_2050_ssp585_miroc
- SpatRaster Representing Future Conditions (2041-2060, SSP585, GCM: MIROC6)
-
future_2100_ssp126_access
- SpatRaster Representing Future Conditions (2081-2100, SSP126, GCM: ACCESS-CM2)
-
future_2100_ssp126_miroc
- SpatRaster Representing Future Conditions (2081-2100, SSP126, GCM: MIROC6)
-
future_2100_ssp585_access
- SpatRaster Representing Future Conditions (2081-2100, SSP585, GCM: ACCESS-CM2)
-
future_2100_ssp585_miroc
- SpatRaster Representing Future Conditions (2081-2100, SSP585, GCM: MIROC6)
-
glm_mx()
- Maxent-like Generalized Linear Models (GLM)
-
glmnet_mx()
- Maxent-like glmnet models
-
import_projections()
- Import rasters resulting from projection functions
-
independent_evaluation()
- Evaluate models with independent data
-
initial_cleaning()
sort_columns()
remove_missing()
remove_duplicates()
remove_corrdinates_00()
filter_decimal_precision()
- Initial occurrence data cleaning steps
-
kuenm2
kuenm2-package
- kuenm2: Detailed Development of Ecological Niche Models
-
m
- SpatVector Representing Calibration Area for Myrcia hatschbachii
-
new_occ
- Independent Species Occurrence
-
occ_data
- Species Occurrence
-
occ_data_noclean
- Species Occurrence with Erroneous Records
-
organize_for_projection()
- Organize and structure variables for past and future projections
-
organize_future_worldclim()
- Organize and structure future climate variables from WorldClim
-
partial_roc()
- Partial ROC calculation for multiple candidate models
-
perform_pca()
- Principal Component Analysis for raster layers
-
plot_explore_calibration()
- Histograms to visualize data from explore_calibration objects
-
plot_importance()
- Summary plot for variable importance in models
-
predict.glmnet_mx()
- Predict method for glmnet_mx (maxnet) models
-
predict_selected()
- Predict selected models for a single scenario
-
prepare_data()
- Prepare data for model calibration
-
prepare_projection()
- Preparation of data for model projections
-
prepare_user_data()
- Prepare data for model calibration with user-prepared calibration data
-
print(<prepared_data>)
print(<calibration_results>)
print(<fitted_models>)
print(<projection_data>)
print(<model_projections>)
- Print method for kuenm2 objects
-
project_selected()
- Project selected models to multiple sets of new data (scenarios)
-
projection_changes()
- Compute changes of suitable areas between scenarios
-
projection_mop()
- Analysis of extrapolation risks in projections using the MOP metric
-
projection_variability()
- Explores variance coming from distinct sources in model predictions
-
response_curve()
all_response_curves()
- Variable response curves for fitted models
-
select_models()
- Select models that perform the best among candidates
-
sp_swd
- Prepared Data for maxnet models
-
sp_swd_glm
- Prepared Data for glm models
-
user_data
- User Custom Calibration Data
-
var
- SpatRaster Representing present-day Conditions (WorldClim)
-
variable_importance()
- Variable importance