Skip to contents

All functions

advanced_cleaning() remove_cell_duplicates() move_2closest_cell()
Advanced occurrence data cleaning
bivariate_response()
Bivariate response plot for fitted models
calibration()
Fitting and evaluation of models, and selection of the best ones
detect_concave()
Detect concave curves in GLM and GLMNET models
explore_calibration_geo()
Explore the spatial distribution of occurrence and background points
explore_calibration_hist()
Explore variable distribution for occurrence and background points
extract_var_from_formulas()
Extract predictor names from formulas
fit_selected()
Fit models selected after calibration
glm_mx()
Maxent-like Generalized Linear Models (GLM)
glmnet_mx()
Maxent-like glmnet models
import_projections()
Import rasters resulting from projection functions
initial_cleaning() sort_columns() remove_missing() remove_duplicates() remove_corrdinates_00() filter_decimal_precision()
Initial occurrence data cleaning steps
kuenm2 kuenm2-package
kuenm2: Detailed Development of Ecological Niche Models
organize_future_worldclim()
Organize and structure future climate variables from WorldClim
partial_roc()
Partial ROC calculation for multiple candidate models
perform_pca()
Principal Component Analysis for raster layers
plot_explore_calibration()
Histograms to visualize data from explore_calibration objects
plot_importance()
Summary plot for variable importance in models
predict.glmnet_mx()
Predict method for glmnet_mx (maxnet) models
predict_selected()
Predict selected models for a single scenario
prepare_data()
Prepare data for model calibration
prepare_projection()
Preparation of data for model projections
prepare_user_data()
Prepare data for model calibration with user-prepared calibration data
print(<prepared_data>) print(<calibration_results>) print(<fitted_models>) print(<projection_data>) print(<model_projections>)
Print method for kuenm2 objects
project_selected()
Project selected models to multiple sets of new data (scenarios)
projection_changes()
Compute changes of suitable areas between scenarios
projection_mop()
Analysis of extrapolation risks in projections using the MOP metric
projection_variability()
Explores variance coming from distinct sources in model predictions
response_curve()
Variable response curves for fitted models
select_models()
Select models that perform the best among candidates
variable_importance()
Variable importance