Skip to contents

All functions

advanced_cleaning() remove_cell_duplicates() move_2closest_cell()
Advanced occurrence data cleaning
bias
Example Bias File
bivariate_response()
Bivariate response plot for fitted models
calib_results_glm
Calibration Results (glm)
calib_results_maxnet
Calibration Results (Maxnet)
calibration()
Fitting and evaluation of models, and selection of the best ones
chelsa_current
SpatRaster Representing present-day Conditions (CHELSA)
chelsa_lgm_ccsm4
SpatRaster Representing LGM Conditions (GCM: CCSM4)
chelsa_lgm_cnrm_cm5
SpatRaster Representing LGM Conditions (GCM: CNRM-CM5)
chelsa_lgm_fgoals_g2
SpatRaster Representing LGM Conditions (GCM: FGOALS-g2)
chelsa_lgm_ipsl
SpatRaster Representing LGM Conditions (GCM: IPSL-CM5A-LR)
chelsa_lgm_miroc
SpatRaster Representing LGM Conditions (GCM: MIROC-ESM)
chelsa_lgm_mpi
SpatRaster Representing LGM Conditions (GCM: MPI-ESM-P)
chelsa_lgm_mri
SpatRaster Representing LGM Conditions (GCM: MRI-CGCM3)
colors_for_changes()
Set Colors for Change Maps
detect_concave()
Detect concave curves in GLM and GLMNET models
enmeval_block
Spatial Blocks from ENMeval
explore_calibration_geo()
Explore the spatial distribution of occurrence and background points
explore_calibration_hist()
Explore variable distribution for occurrence and background points
explore_partition_extrapolation()
Analysis of extrapolation risks in partitions using the MOP metric
extract_occurrence_variables()
Extracts Environmental Variables for Occurrences
extract_var_from_formulas()
Extract predictor names from formulas
fit_selected()
Fit models selected after calibration
fitted_model_chelsa
Fitted model with CHELSA variables
fitted_model_concave
Fitted model with concave curves
fitted_model_glm
Fitted model with glm algorithm
fitted_model_maxnet
Fitted model with maxnet algorithm
enmeval_block
Spatial Blocks from flexsdm
future_2050_ssp126_access
SpatRaster Representing Future Conditions (2041-2060, SSP126, GCM: ACCESS-CM2)
future_2050_ssp126_miroc
SpatRaster Representing Future Conditions (2041-2060, SSP126, GCM: MIROC6)
future_2050_ssp585_access
SpatRaster Representing Future Conditions (2041-2060, SSP585, GCM: ACCESS-CM2)
future_2050_ssp585_miroc
SpatRaster Representing Future Conditions (2041-2060, SSP585, GCM: MIROC6)
future_2100_ssp126_access
SpatRaster Representing Future Conditions (2081-2100, SSP126, GCM: ACCESS-CM2)
future_2100_ssp126_miroc
SpatRaster Representing Future Conditions (2081-2100, SSP126, GCM: MIROC6)
future_2100_ssp585_access
SpatRaster Representing Future Conditions (2081-2100, SSP585, GCM: ACCESS-CM2)
future_2100_ssp585_miroc
SpatRaster Representing Future Conditions (2081-2100, SSP585, GCM: MIROC6)
glm_mx()
Maxent-like Generalized Linear Models (GLM)
glmnet_mx()
Maxent-like glmnet models
import_projections()
Import rasters resulting from projection functions
independent_evaluation()
Evaluate models with independent data
initial_cleaning() sort_columns() remove_missing() remove_duplicates() remove_corrdinates_00() filter_decimal_precision()
Initial occurrence data cleaning steps
kuenm2 kuenm2-package
kuenm2: Detailed Development of Ecological Niche Models
m
SpatVector Representing Calibration Area for Myrcia hatschbachii
new_occ
Independent Species Occurrence
occ_data
Species Occurrence
occ_data_noclean
Species Occurrence with Erroneous Records
organize_for_projection()
Organize and structure variables for past and future projections
organize_future_worldclim()
Organize and structure future climate variables from WorldClim
partial_roc()
Partial ROC calculation for multiple candidate models
perform_pca()
Principal Component Analysis for raster layers
plot_explore_calibration()
Histograms to visualize data from explore_calibration objects
plot_importance()
Summary plot for variable importance in models
predict.glmnet_mx()
Predict method for glmnet_mx (maxnet) models
predict_selected()
Predict selected models for a single scenario
prepare_data()
Prepare data for model calibration
prepare_projection()
Preparation of data for model projections
prepare_user_data()
Prepare data for model calibration with user-prepared calibration data
print(<prepared_data>) print(<calibration_results>) print(<fitted_models>) print(<projection_data>) print(<model_projections>)
Print method for kuenm2 objects
project_selected()
Project selected models to multiple sets of new data (scenarios)
projection_changes()
Compute changes of suitable areas between scenarios
projection_mop()
Analysis of extrapolation risks in projections using the MOP metric
projection_variability()
Explores variance coming from distinct sources in model predictions
response_curve() all_response_curves()
Variable response curves for fitted models
select_models()
Select models that perform the best among candidates
sp_swd
Prepared Data for maxnet models
sp_swd_glm
Prepared Data for glm models
user_data
User Custom Calibration Data
var
SpatRaster Representing present-day Conditions (WorldClim)
variable_importance()
Variable importance