Skip to contents

Variable importance

Usage

variable_importance(models, modelID = NULL, parallel = FALSE, ncores = NULL,
                    progress_bar = TRUE, verbose = TRUE)

Arguments

models

an object of class fitted_models returned by the fit_selected() function.

modelID

(character). Default = NULL.

parallel

(logical) whether to calculate importance in parallel. Default is FALSE.

ncores

(numeric) number of cores to use for parallel processing. Default is NULL and uses available cores - 1. This is only applicable if parallel = TRUE.

progress_bar

(logical) whether to display a progress bar during processing. Default is TRUE.

verbose

(logical) whether to display detailed messages during processing. Default is TRUE.

Value

A data.frame containing the relative contribution of each variable. An identification for distinct models is added if fitted contains multiple models.

Examples

# Example with maxnet
# Import example of fitted_models (output of fit_selected())
data(fitted_model_maxnet, package = "kuenm2")

# Variable importance
imp_maxnet <- variable_importance(models = fitted_model_maxnet)
#> 
#> Calculating variable contribution for model 1 of 2
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |======================================================================| 100%
#> 
#> Calculating variable contribution for model 2 of 2
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |======================================================================| 100%

# Plot
plot_importance(imp_maxnet)


# Example with glm
# Import example of fitted_models (output of fit_selected())
data(fitted_model_glm, package = "kuenm2")

# Variable importance
imp_glm <- variable_importance(models = fitted_model_glm)
#> 
#> Calculating variable contribution for model 1 of 1
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |========                                                              |  11%
  |                                                                            
  |================                                                      |  22%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |======================================================                |  78%
  |                                                                            
  |==============================================================        |  89%
  |                                                                            
  |======================================================================| 100%

# Plot
plot_importance(imp_glm)